
A quasi-universal scaling law for atomic transport in simple fluids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 5415

(http://iopscience.iop.org/0953-8984/11/28/303)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 12:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/28
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 5415–5427. Printed in the UK PII: S0953-8984(99)02929-X
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fluids
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Nuclear Research Centre Negev, PO Box 9001, Beer-Sheva 84190, Israel

Received 23 March 1999

Abstract. A semi-empirical ‘universal’ corresponding-states relationship, for the dimensionless
transport coefficients ofdense fluidsas functions of the reduced configurational entropy, was
proposed more than twenty years ago and established by many simulations. Here it is shown
analytically, by appealing to Enskog’s original results for the inverse-power potentials, that the
quasi-universal entropy scaling can be extended also todilute gases. The analytic form and the
possible origin for the entropy scaling for dense fluids are discussed in view of this unexpected
result. On the basis of the entropy scaling we predict aminimum in the shear viscosityas a function
of temperature for all soft inverse-power potentials, in quantitative agreement with the available
simulations.

1. Introduction: excess-entropy corresponding states for the transport coefficients of
dense fluids

Transport coefficients are defined in terms of the response of a system to a perturbation [1–3],
e.g. the diffusion coefficientD relates the particle flux to a concentration gradient, and the shear
viscosityη is a measure of the shear stress induced by an applied velocity gradient (see table 1).
In computer simulations, transport coefficients can be calculated from: (a) equilibrium time
correlation functions, e.g.

D = 1

3

∫ ∞
0

dt 〈vi (t) · vi (0)〉 (1)

involving the velocity autocorrelationsvi (t), or the corresponding Einstein relations, e.g.

2Dt = 1

3
〈|ri (t)− ri (0)|2〉 (2)

averaging over all particlesi of the system, or (by going back to first principles) from
(b) non-equilibrium simulation of the perturbation, with generally good agreement between
the methods. Dimensional analysis employing the elementary concepts from kinetic theory,

Table 1. The flux-to-gradient relation via transport coefficients (see the text).

Flux type Flux= −(coefficient)(gradient) Gradient type

Particles jx = −D dc/dx Concentration
Heat qx = −κ dT /dx Temperature
Momentum 5x = −η du/dx Flow velocity

0953-8984/99/285415+13$30.00 © 1999 IOP Publishing Ltd 5415
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i.e. the mean free pathl = 1/(ρAσ ), the mean thermal velocityv = (kBT /m)
1/2, and the

collisional cross sectionAσ = π(2R)2 = πσ 2, leads to simple estimates of the transport
coefficients (see table 2). Very sophisticated theory is required for significant quantitative
improvements on these simple estimates [1], especially for dense (strongly coupled) fluids,
and up to now there is no unifying quantitative description of atomic transport in condensed
matter.

Table 2. Simple estimates of the transport coefficients obtained by dimensional analysis using the
mean free pathl = 1/(ρAσ ), the mean thermal velocityv = (kBT /m)1/2, and the collisional cross
sectionAσ = π(2R)2 = πσ 2. C is the heat capacity.

D ∼ vl ∼ v/ρAσ ∼ (kBT /m)1/2/(ρσ 2)

κ ∼ vCρ/NA ∼ vC/AσNA
η ∼ mρvl ∼ mv/Aσ ∼ (mkBT )1/2/σ 2

In turn, many simulations for the transport coefficients of strongly coupled one-component
fluids can be correlated with equilibrium thermodynamic properties, according to the plot of a
reduced (dimensionless) coefficient as function of the reduced excess (i.e. configurational, over
the ideal-gas value) entropy,SE/(NkB) [2–5]. Macroscopicreduction parameters (density and
temperature) were chosen for the transport coefficients, namely a mean interparticle distance,
d = (V/N)1/3 = ρ−1/3, and the thermal velocity,vth = (kBT /m)

1/2. Specifically, from
the coefficients of thermal conductivity,κ, viscosity,η, and diffusion,D, one defines the
corresponding reduced (dimensionless) quantities:

κ∗ = κ ρ−2/3

kB(kBT /m)1/2

η∗ = η ρ−2/3

(mkBT )1/2

D∗ = D ρ1/3

(kBT /m)1/2
.

(3)

This form of the reduced transport coefficients is suggested by an elementary kinetic theory
for a dense medium of particles with thermal velocities but with a mean free path between
collisions which is of the order of the average interparticle distance. The plots of hundreds of
simulation results for the reduced transport coefficients, of systems with quite disparate pair
interactions, as functions of (minus) the reduced excess entropy,s = −SE/(NkB) > 0, show
quasi-universal behaviour, of the type [2–5]

κ∗ ≈ 1.5e0.5s

η∗ ≈ 0.2e0.8s

D∗ ≈ 0.6e−0.8s

(4)

for all strongly coupled simple fluids,s & 1 (freezing corresponds to about 4. s . 5).
Different potentials can be fitted better by somewhat different exponential arguments (e.g. for
hard spheres,D∗ ∝ ∼ e−0.65s) but, nevertheless, using these plots the diffusion coefficients,
which vary by about two orders of magnitude, can be estimated within about 30% by
using corresponding-statesvalues based on the excess entropy [2–5]. More recently, the
excess-entropy corresponding-states consideration was extended to moderately and strongly
coupled plasmamixtures[6]. Because of the choice ofmacroscopicreduction parameters
for the transport coefficient rather than microscopic potential parameters, the excess-entropy
corresponding-states relation [4] can be applied directly to real materials. From this point of
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view it can be an even more effective recipe than Enskog’s approximation [7] that relates the
transport coefficients to the thermal pressure.

The excess-entropy corresponding-states consideration for transport coefficients was
originally motivated [4] by the success of the variational hard-sphere (HS) thermodynamic
perturbation theory [8] for simple fluids in which the hard-sphere radius, or equivalently the
excess entropy, was used to parametrize the structure of equilibrium fluids. This underlying
connection to the hard-sphere results is also reflected by the fact that the diffusion and viscosity
coefficients for all dense fluids approximately obey the Stokes–Einstein relation as originally
found for hard spheres of diameterσ [1,9]:

Dη
σ

kBT
= D∗η∗(ρσ 3)1/3 ' 2

qπ
(5)

whereq ' 5. This holds provided that the ratio of the effective hard-sphere diameter of the
particles to the Wigner–Seitz radius,a = (3/(4πρ))1/3, is independent of temperature, and
given approximately by

σ

a
= 2

5π

(
4π

3

)1/3 1

0.12
≈ 1.7 (6)

which is usually obeyed quite well. The magnitude of the deviations from the universal
relations (equations (4)) is of the order of the variations ofq between slip (q = 4) and
stick (q = 6) boundary conditions. Quasi-harmonic cell-model approaches also suggest the
macroscopic reduction parameters, and are even able to predict [2,3,5] universal exponential
dependences of the transport coefficients on the excess entropy, like those found empirically
(equations (4)), but they do not yield the correct parameters. Specifically, as shown by Hoover
and co-workers [2, 3, 5] following Harrocks and McLaughlin, for the heat conductivity, and
Andrade for the viscosity, the reduced transport coefficients can be crudely related to the
Einstein frequency,ωE . The result is

κ∗ ∝ η∗ ∝
(
mω2

Ed
2

kBT

)1/2

(7)

where, in the Einstein approximation,(
mω2

Ed
2

kBT

)1/2

∝ exp

(
− SE

3NkB

)
= es/3. (8)

However, this reasoning leads to an incorrect result:D∗ ∝ (mω2
Ed

2/(kBT ))
1/2, and it cannot

be applied to the completely anharmonic hard spheres.
The simplified models can provide only some intuitive feeling for the scaling as established

empirically by the simulations, and better understanding of the entropy scaling is needed. The
excess-entropy scaling relation is a semiquantitative model (like the van der Waals equation
of state), rather than a theory. Like any corresponding-states relationship that links non-
scaling force laws, it can only be approximate. However, in view of the absence of a unifying
quantitative description of atomic transport in condensed matter, the excess-entropy scaling
is important for estimating unknown transport coefficients and for providing guidelines for
theoretical analysis. Such a point of view was also taken by a recent article inNature [10]
where a variant of the entropy scaling was considered, which was tailored specifically for the
diffusion coefficient.

The present work addresses several questions regarding the entropy scaling. It is first
shown (section 2) that the quasi-universal excess-entropy scaling can be extended also to
a regime where it is least expected, namely for describing Enskog’s famous results [7] for
dilute gases. This demonstrates that the excess-entropy corresponding states can result from a
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combination of various mathematical and physical causes, and cannot be explained completely
in terms of either a hard-sphere-type modelling or cell-theory arguments. The empirical validity
of an excess-entropy scaling then (section 3) enables one to draw certain general conclusions
as well as to obtain specific results about transport coefficients, in particular concerning the
minimum in the shear viscosityas a function of temperature for inverse-power potentials.
The result as obtained analytically for dilute gases is a power-law dependence of the reduced
transport coefficients as a function of the excess entropy. This raises the question of the analytic
form for dense fluids: is it exponential, and if so can we predict the exponent? By considering
in detail the hard-sphere results it is shown (section 4) that the analytic form is probably
not exponential, yet an exponential form can provide a good numerical representation of the
function. Finally (section 5), by appealing to the fundamental Green–Kubo formalism [1], a
conjecture is offered as regards how the excess-entropy corresponding-states relationship for
the reduced transport coefficients for strongly coupled fluids can be related to a well known
scaling relation for the equilibrium structure.

2. Excess-entropy scaling for the transport coefficients of dilute gases

It turns out that the excess-entropy scaling is valid also where it is least expected, namely
for dilute gases. This can be demonstrated by using Enskog’s famous results [7] for the
class of inverse-power potentials of the formφ(r) = ε(σ/r)µ. This class includes the
hard-sphere (µ = ∞) and Coulomb (the one-component plasma,µ = 1) potentials as two
extreme cases. These systems provide starting points for thermodynamic perturbation theories,
where their homogeneity facilitates the theoretical treatment [11]. The excess thermodynamic
properties of these systems thus depend only on a reduced temperature–density variable,
y = (ρσ 3)(kBT /ε)

−3/µ, and in particular the reduced excess entropy is given by

SE/(NkB) ≡ −s = −sµ(y).
For dilute gases of particles interacting via the inverse-power potentialsµ > 3, Enskog obtained
the following results [7]:

η =
(
(mkBT )

1/2

σ 2

)[
5

8

(
1

π

)1/2(2kBT

µε

)2/µ/{
A2(µ)0

(
4− 2

µ

)}]
(9)

D =
(
(kBT /m)

1/2

ρσ 2

)[
3

8

(
1

π

)1/2(2kBT

µε

)2/µ/{
A1(µ)0

(
3− 2

µ

)}]
(10)

κ = 5

2
η

3kBT

2
(11)

where0(x) is the standard Gamma function, andA1(µ)andA2(µ)are slowly varying functions
of µ, of the order of 0.5 (see table 3). These results look like those for hard spheres but with
a temperature-dependent effective hard-sphere diameter:σeff /σ ∼ (ε/(kBT ))1/µ. Enskog’s
expressions exhibit strongµ-dependence, and no universal behaviour has been anticipated.
Yet, we shall see now that in fact these are quasi-universal provided that themacroscopic
reduction parameters and the reduced excess entropy are involved. Indeed, for dilute inverse-
power gases, in the second virial approximation, the excess entropy is linear iny, and is given
by [12]

s = sµ(y) = 2πy

3

(
µ− 3

µ

)
0

(
µ− 3

µ

)
. (12)
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Combining this relation with the Enskog results forµ > 3, we obtain a universal form for the
reduced coefficients:

κ∗ = 4

15
η0s
−2/3

η∗ = η0s
−2/3

D∗ = D0s
−2/3

(13)

for all µ > 3. The prefactorsη0 ' 0.27,D0 ' 0.37 are nearly universal for allµ & 4 (almost
monotonic variation of less than 10% and of less than 15% betweenµ = 4 andµ = ∞, for
η0 and forD0, respectively; see table 3). For the one-component plasma (µ = 1) Enskog’s
general formulae still hold provided that we introduce Spitzer’s correction [13]

A1(µ = 1) = ln λ ≡ ln

[
1 +

(
2

3s

)2
]

(14)

wheres = (30)1/20/6 and here0 = (Ze)2/(akBT ) is the standard plasma coupling parameter.
Thus, the Enskog–Spitzer result forµ = 1 can be written as

D∗ ' 0.4s−4/3

/
ln

[
1 +

(
2

3s

)2
]

η∗ ' 0.35s−4/3

/{
ln

[
1 +

(
2

3s

)2
]
− 4

4 + (3s)2

}
.

(15)

Table 3. Parameters for transport coefficients of dilute gases of particles interacting via the inverse-
power potentials,r−µ (see the text).

Powerµ A1 A2 D0 η0

4 0.436 0.422 0.409 0.264
6 0.357 0.385 0.382 0.258
8 0.332 0.382 0.371 0.258

10 0.319 0.383 0.367 0.262
∞ 0.333 0.500 0.346 0.288

The quasi-universal behaviour for dense fluids (equations (4)), which holds also for the
Coulomb case, is replaced for dilute inverse-power fluids by two different behaviours for the
‘neutral’ (µ & 4) and ‘charged’ (µ = 1) particles (see figures 1 and 2). Note in figures 1 and 2
that forµ & 4 the dilute-gas and the dense-gas expressions forD∗(s) almost merge ats ' 1.
In addition, forµ = 1 the weak-coupling equation expressionD∗(s) gives a minimum for
s ' 0.3. It is worth noting that the region arounds ' 1 is indeed the transition region between
weak- and strong-coupling behaviours for fluids from the point of view of the equation of state
also.

The origin of the excess-entropy quasi-universal scaling, as derived for the reduced
transport coefficients of dilute inverse-power fluids, is mathematically very similar to the
excess-entropy scaling for their second virial coefficients [12], by which thevariational
thermodynamic perturbation theory (physically expected to ‘work’ for dense fluids) is
unexpectedly found to be almost as accurate also for dilute gases. It may be the case that
these excess-entropy scalings for the static and dynamic properties are generally related (see
section 5).
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Figure 1. A log–log plot of the reduced diffusion coefficientD∗ for the inverse-power potentials,
φ(r) = ε(σ/r)µ, as a function of (minus) the reduced excess entropy,s: log10(D

∗) versus log10(s).
The curves labelled a, b, and c correspond to the expressions given, respectively, by: (curve a) equ-
ation (15) for the dilute Coulomb one-component plasma (µ = 1), (curve b) equation (13) for
the dilute inverse systems withµ & 4, and (curve c) equation (4) for general dense simple fluids.
Curves a and b are valid for dilute gases, log10(s) . −1, and curve c is valid for dense fluids,
log10(s) & 0, while the full picture is obtained by a smooth crossover interpolation between these
limiting behaviours. See the text.

Figure 2. As figure 1, but for the reduced viscosity,η∗.

3. Some consequences of the excess-entropy scaling

The assumption (which is exact for the inverse-power potentials) that the reduced coefficients
depend on the density and on the temperature only via their dependence ons, e.g.D∗(ρ, T ) =
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D∗(s(ρ, T )), can be used to infer some general trends. Recall thats is minus the excess
entropy, and thus we can expect that for simple fluids(

∂s

∂T

)
ρ

< 0(
∂s

∂ρ

)
T

> 0.

(16)

For the extreme case of hard spheres, we have∂s/∂T = 0. If we further assume (see figure 1)
that∂D∗(s)/∂s < 0, then(

∂D

∂T

)
ρ

> 0(
∂D

∂ρ

)
T

< 0.

(17)

Considering (figure 2) the qualitative behaviour ofη∗(s) and the density independence of
η for the ideal gas, we expect that(

∂η

∂ρ

)
T

> 0. (18)

The temperature dependence is, however, more interesting:(
∂η

∂T

)
ρ

∼ 1

2
T −1/2η∗ + T 1/2

(
∂η∗

∂s

)(
∂s

∂T

)
ρ

. (19)

Thus, contrary to the expected monotonic behaviour as a function of the density, it is possible
for η as a function ofT to have a minimum when∂η∗/∂s > 0. Thus, except for the hard-sphere
system for which we have(∂η/∂T )ρ > 0, we expect that(

∂η

∂T

)
ρ

T 0 (20)

provided that correspondingly

T

(
∂s

∂T

)
ρ

(
∂ ln η∗

∂s

)
T −1

2
. (21)

Using the quasi-universal relation (equations (4)) in the region where∂η∗/∂s > 0, and simul-
ation results for the equation of state for inverse-power potentials [11, 12], we estimate the
minimumshear viscosity, from

T

(
∂s

∂T

)
ρ

(
∂ ln η∗

∂s

)
= −1

2
.

This predicted minimum as a function of the temperature can be understood as follows: for high
temperature (weak coupling), the shear viscosity is determined by the kinetics of pair collisions
and it decreases as the temperature goes down. For low temperatures (strong coupling), near
freezing, the viscosity is determined mainly by interaction effects, and goes down as the
temperature increases. The minimum is predicted to occur in the intermediate-coupling region,
connecting these two types of behaviour.

The repulsive inverse-power potentials can be written also as

ϕ(r)

kBT
= 0

(r/aWS)µ
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whereaWS = (3/(4πρ̄))1/3 is the Wigner–Seitz radius, and0 = ((4π/3)y)µ/3 is the coupling
parameter. For strongly coupled inverse-power fluids it was recently shown [14] that the
potential energy can be written as an asymptotic0→∞ expansion of the form

U

NkBT
= Cfluid0 +

(
0

00

)2/5

+ · · · (22)

where thefluid Madelung constant, Cfluid, for n > 3 is given by the following integral:

Cfluid = 1

2n(n− 2)!

∫ ∞
0

(x + 2)x(n−1)

(x + 2) + (x − 2)ex
dx.

The simulation results for thethermal energyuth = U/(NkBT ) − Cfluid0 in the strong-
coupling region0 & 1, can be fitted excellently by the form(0/00)

2/5 + c. We get
00 = 10.227, 3.1271, 5.3058, 13.921, 53.714 forn = 1, 4, 6, 9, 12, respectively, andc ∼ 0.
The equation of state corresponding touth = (0/00)

δ leads to

T

(
∂s

∂T

)
ρ

=
(

1− δ
δ

)
T

(
∂uth

∂T

)
ρ

= (1− δ)uth.

For a behaviour of the type (equation (4))η∗(s) ∝ eαs with α ' 1
5, and with the exponent

δ = 2
5, the minimum is predicted to occur when the ‘thermal’ potential energy is about equal

to kBT :

uth =
(
0

00

)δ
= 1

2α(1− δ) ' 1 (23)

i.e.

0min ∼ 00 (24)

namely in the region where 1. s . 2.
More specifically,0min ∼ 10 (i.e.s ∼ 1) for the one-component plasma (µ = 1), and

0min ∼ 55 (namelyymin ∼ 0.64, i.e.s ∼ 2) for the soft spheres (µ = 12). The result for the
one-component plasma is in good agreement with generalized hydrodynamics calculations of
Vieillefosse and Hansen (see figure 1 in [15]). If we use the best fit of Ashurst and Hoover to
their data (see figure 4 in [16]), which extrapolates to Enskog’s weak-coupling limit, namely

η ∝ (0.171 + 0.022(e6.83y/
√

2 − 1))y−8/3

we find a minimum aty ' 0.69 (i.e., in terms of the variable used in [16],x = y/√2' 0.49).
This result is close to our prediction. It would be interesting to check our prediction further
for a minimum shear viscosity as a function of temperature for inverse-power potentials.

4. Concerning the exponential scaled form for dense fluids

As mentioned above, quasi-harmonic cell-model approaches [2, 3, 5] suggest exponential
scaled forms for the transport coefficients upon using macroscopic reduction parameters,
e.g.η∗ ∝ es/3. A recent variant of the entropy scaling, tailored specifically for the diffusion
coefficient [10] of dense matter, introducesmicroscopicreduction parameters, and obtains
another universal scaling relation:

D+ ≈ 0.05e−s (25)

for a reduced diffusion coefficient,D+ (see below). Using the hard-sphere system as a detailed
example, it will be now explained how this new result just reflects the previous results, namely
D∗ ≈ 0.6e−0.8s , and that the exponential forms only provide a good numerical representation
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to results which are fundamentally of a rational form which stems from series in powers of the
density.

Enskog’s theory for hard spheres [7], which is based on binary collisions, is remarkably
accurate when compared with the simulations [9]. For the self-diffusion coefficient in a one-
component system of hard spheres of diameterσ and number densityρ, he obtained

DE = Dgas

g(σ )
(26)

whereg(σ ) = Zc/(4ξ) is the value of the radial distribution functiong(r) at r = σ ,

ξ = 4π

3

(
σ

2

)3

ρ

is the packing fraction,Dgas is the result for a dilute gas given by equation (10):

Dgas= 3

8ρσ 2

(
kBT

mπ

)1/2

(27)

andZc represents the equation of state (P is the pressure),Zc = P/(ρkBT )− 1. The simul-
ation results for the hard-sphere fluid (ξ . 0.5) equation of state can be well represented
by [8]

P

ρkBT
= 1 + ξ + ξ2 − ξ3

(1− ξ)3 (28)

from which it follows that

s = 4ξ − 3ξ2

(1− ξ)2 . (29)

These expressions were obtained as small corrections to the analytic expressions from the
scaled-particle and Percus–Yevick theories [17], and similar rational expressions can be
obtained as Padé approximants for the virial expansion. Enskog’s result can thus be written as

DE

Dgas
= 1

g(σ )
= (1− ξ)3

1− ξ/2 (30)

while a fit to the relatively small corrections to Enskog, as obtained from the most recent
simulations for the hard-sphere fluid [9], is given by

DHS

DE

= 1.018 96(1 + 0.073ξ + 11.6095ξ2 − 26.951ξ3). (31)

Finally, the reduced coefficient is obtained from

D∗gas= Dgas
ρ1/3

(kBT /m)1/2
= 3(π/6)2/3

8π1/2
ξ−2/3 ' 0.137ξ−2/3. (32)

The new reduced diffusion coefficient [10]D+ is related to ourD∗ by the following
relation:

D+

D∗
= 2√

π

(
π

6

)4/3/[(
σ

a

)4

g(σ )

]
(33)

i.e. it uses [10]σ as the unit of length and

τE = (4σ 2g(σ )ρ
√
πkBT /m)

−1

as the unit of time, instead of the corresponding macroscopic values,ρ−1/3 and
ρ−1/3/(kBT /m)

1/2, respectively. For general potentials,σ is interpreted [10] as the position
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of the first maximum of the radial distribution functiong(r), and it is thus clear thatD+ is not
meant to provide proper scaling for dilute gases. For hard spheres of diameterσ ,(

D+

D∗

)
HS

' ξ−4/3

16.8g(σ )
. (34)

The reduced coefficientsD∗E = (DE/Dgas)D
∗
gas andD∗HS = (DHS/DE)D

∗
E along withD+

and the ratio(D+/D∗)HS are presented in figure 3. All of these dimensionless quantities are
obtained from the manifestly rational expressions above, yet we see from figure 3 that they
can all be approximated by an exponential. Specifically,D∗E ∝∼ e−0.42s , D∗HS ∝∼ e−0.65s ,
(D+/D∗)HS ∝∼ e−0.5s , soD+ ∝∼ e−1.1s . For soft interactions, like the Coulomb one-
component plasma, becauseσ/a and g(σ ) vary more slowly as a function of the excess
entropy, the ratio (not shown in figure 3)

D+

D∗
∝ 1

(σ/a)4g(σ )
∝ ∼ e−0.2s

features a smaller argument of the exponent, soD+ ∝ ∼e−s . Note that the value of the
exponent also depends on the accuracy of the approximation for the excess entropy, and
differences of 10% in the argument (like between e−s and e−1.1s) can be expected between
results based on simulation results for the two-particle approximation (as employed in [10])
and those based on simulation results for the equation of state. It can be expected that other
choices of reduction parameters involving the dimensionless quantitiesg(σ ) andσ/a can also
provide quasi-universal excess-entropy scalings involving other arguments of the exponent.
Likewise, replacingτE byρ−1/3/(kBT /m)

1/2 in the scaling of the Kolmogorov–Sinai entropy,
hKS , will only change the functional form of the apparently quasi-universal dependence [18]
of hKS on the excess entropy.

Figure 3. A semi-log plot of reduced diffusion coefficients for the hard-sphere system as a function
of (minus) the reduced excess entropy,s, using equations (26)–(34). The curves labelled a, b, c, and
d correspond, respectively, to: (curve a) ln(D∗HS), (curve b) ln(D∗E), (curve c) ln((D+/D∗)HS),
and (curve d) ln(D+). See the text.
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5. The conjectured relation between the ‘static’ and ‘dynamic’ excess-entropy scalings

In view of the analytic derivation of the entropy scaling for dilute gases, it is of interest to
try to explore whether there is a formal way to derive the entropy scaling for dense fluids.
One such possibility is perhaps through the Green–Kubo formalism [1, 19, 20] where the
transport coefficients are given in terms of the time integral of an autocorrelation function for
the appropriate current, e.g. the velocity autocorrelation for the coefficient of self-diffusion.
In turn, these functions can be expanded for short times as a Taylor series in powers of the
time with coefficients that are given in terms of space integrals involving the equilibrium
correlation functions of the system, and the pair interactions and their derivatives. The success
of the variational perturbation theory with hard-sphere or other inverse-power potentials as
reference can be formally shown to be equivalent to the following statement [12]: from the
standpoint of integrals of the pair correlation functions, of the type which appear in expressions
for the energy or virial pressure, the pair correlation functionsgφ(r; ρ, T ) of any dense fluid
of particles, with pair interactionφ(r), can be well approximated by a single universal set,
g(r/a, s), with the reduced excess entropys as the single scaling parameter. This scaling
holds exactly for any single inverse-power potential. The approximation of universality means
using the exact set of any inverse-power potential as the approximate for any other dense
fluid. Similar entropy scaling of integrals of higher-order correlation functions can also be
expected to be valid. To the extent that this kind of information is dominant in determining the
Green–Kubo integral, we can formally expect the entropy scaling for the transport coefficient.
It cannot be ruled out that this is the underlying mathematical reason for the emergence of that
scaling, but the complexity of the expressions involved and the slow convergence of the time
series essentially prohibit a direct test of this conjecture. The flavour of such an approach can
be demonstrated, however, by a specific example where the convergence of the time series is
‘enhanced’ using a model memory function [1,20] as given below for the diffusion coefficient
of the one-component plasma [21].

For the one-component plasma, choosing the inverse of the plasma frequencyω−1
p as the

unit of time, the dimensionless self-diffusion coefficient can be written as

D∗ ∝ D

ωpa2
= 1

30

∫ ∞
0
ψ(t) dt (35)

where

ψ(t) =
〈
vi(t
′)vi(t ′ + t)

〉
〈vi(t ′)vi(t ′)〉 (36)

is the normalized velocity autocorrelation function,0 is the standard coupling parameter, and
the averaging is carried out over all particlesi of the system and over the ‘zero’ of time,t ′.
The short-time expansion is [21]

ψ(t) = 1− t2

2!3
+
(12J + 1)t4

4!9
− · · · (37)

where

J (0) =
∫ ∞

0
r−4g(r) dr

is a moment of the pair correlation function, andr is in units ofa. It is customary to analyse
the autocorrelation function by expressing its decay rate via a ‘memory function’M(t):

dψ(t)

dt
= −

∫ t

0
M(t ′)ψ(t − t ′) dt ′. (38)
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Assuming a Gaussian form forM(t), the short-time expansion can be adjusted by [21]

M(t) = 1

3
e−2J t2.

In terms ofM(t) we can write

D∗ ∝ 1

30

(∫ ∞
0
M(t) dt

)−1

(39)

and, using the Gaussian form above,

D∗ ∝ D

ωpa2
' J 1/2

0.630
. (40)

For 0 & 10, i.e.s & 1, this expression agrees reasonably well with the simulations [21]
(deviations of less than 50% over a two-orders-of-magnitude change ofD/(ωpa

2)). On the
other hand, moments of the type ofJ are approximately universal if expressed in terms of
g(r/a, s). Specifically, if we evaluateJ using the hard-sphere functionsg(r/a, s), we do not
introduce large errors. Thus, if the dominant contribution to the Green–Kubo integrals can be
expressed via integrals of the correlation functions that can be excess-entropy scaled, the net
result can be the quasi-universality as featured by equations (4).

6. Conclusions

A semi-empirical ‘universal’ corresponding-states relationship, for the dimensionless transport
coefficients ofdense fluidsas functions of the reduced configurational entropy,D∗(s), η∗(s),
κ∗(s), was proposed more than twenty years ago [4] and established by many simulations
[2,3,5]. Because of the choice ofmacroscopicreduction parameters for the transport coefficient
rather than microscopic potential parameters, this relation between transport coefficients and
the equation of state can be applied directly to real materials, and gains special importance in
view of the absence of a unifying quantitative description of atomic transport in condensed
matter. Simplified models can provide only some sort ofa posteriori ‘justification’ for the
intrinsically approximate excess-entropy scaling relation. The idea of excess-entropy scaling
was rediscovered in a recent article inNature [10], yet in a very restricted form. This
demonstrates that the excess-entropy scaling should be better known and better understood.
The present work, which is a step in that direction, extends the original excess-entropy
scaling [4] also todilute gases, and discusses its analytic form and origin for dense fluids
in view of this unexpected result.

It was first shown analytically that the quasi-universal excess-entropy scaling can be
extended also to a regime where it is least expected, namely for describing Enskog’s famous
results [7] for dilute gases interacting through inverse-power potentials. Mathematically this
is very similar to the excess-entropy scaling for their second virial coefficients [12], and raises
the possibility that the known excess-entropy scalings for the static and dynamic properties
are generally related. The empirical validity of an excess-entropy scaling, as emerges from
the combination of the scalings for dense and dilute fluids, enables one to make general
predictions about transport coefficients, in particular a minimum shear viscosity as a function
of temperature for inverse-power potentials, in agreement with available simulations. The
analytic derivation for dilute gases raises the question of the exponential form chosen to fit
the data for dense fluids. By considering in detail the hard-sphere results, it was shown
that the analytic form is probably not exponential, yet an exponential form can provide a good
numerical representation of the function. Finally, by appealing to the fundamental Green–Kubo
formalism [1], a conjecture was offered as regards how the excess-entropy corresponding-states
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relationship for the reduced transport coefficients for strongly coupled fluids can be related to
a well known scaling relation for the equilibrium structure.
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